KCNQ1-dependent transport in renal and gastrointestinal epithelia.

نویسندگان

  • Volker Vallon
  • Florian Grahammer
  • Harald Volkl
  • Ciprian D Sandu
  • Kerstin Richter
  • Rexhepi Rexhepaj
  • Uwe Gerlach
  • Qi Rong
  • Karl Pfeifer
  • Florian Lang
چکیده

Mutations in the gene encoding for the K+ channel alpha-subunit KCNQ1 have been associated with long QT syndrome and deafness. Besides heart and inner ear epithelial cells, KCNQ1 is expressed in a variety of epithelial cells including renal proximal tubule and gastrointestinal tract epithelial cells. At these sites, cellular K+ ions exit through KCNQ1 channel complexes, which may serve to recycle K+ or to maintain cell membrane potential and thus the driving force for electrogenic transepithelial transport, e.g., Na+/glucose cotransport. Employing pharmacologic inhibition and gene knockout, the present study demonstrates the importance of KCNQ1 K+ channel complexes for the maintenance of the driving force for proximal tubular and intestinal Na+ absorption, gastric acid secretion, and cAMP-induced jejunal Cl- secretion. In the kidney, KCNQ1 appears dispensable under basal conditions because of limited substrate delivery for electrogenic Na+ reabsorption to KCNQ1-expressing mid to late proximal tubule. During conditions of increased substrate load, however, luminal KCNQ1 serves to repolarize the proximal tubule and stabilize the driving force for Na+ reabsorption. In mice lacking functional KCNQ1, impaired intestinal absorption is associated with reduced serum vitamin B12 concentrations, mild macrocytic anemia, and fecal loss of Na+ and K+, the latter affecting K+ homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential expression of KCNQ1 K+ channel in tubular cells of frog kidney

The aim of this study was to evaluate KCNQ1 K+ channel expression in the frog kidney of Rana esculenta. KCNQ1 K+ channel, also known as KvLQT1, is the pore forming a-subunit of the IKs K+ channel, a delayed rectifier voltage-gated K+ channel, which has an important role in water and salt transport in the kidney and gastrointestinal tract. The expression of KCNQ1 K+ channel along tubular epithel...

متن کامل

AMP-activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4-2 in renal epithelial cells.

The KCNQ1 K(+) channel plays a key role in the regulation of several physiological functions, including cardiac excitability, cardiovascular tone, and body electrolyte homeostasis. The metabolic sensor AMP-activated protein kinase (AMPK) has been shown to regulate a growing number of ion transport proteins. To determine whether AMPK regulates KCNQ1, we studied the effects of AMPK activation on ...

متن کامل

The Role of S4 Charges in Voltage-dependent and Voltage-independent KCNQ1 Potassium Channel Complexes

Voltage-gated potassium (Kv) channels extend their functional repertoire by coassembling with MinK-related peptides (MiRPs). MinK slows the activation of channels formed with KCNQ1 alpha subunits to generate the voltage-dependent I(Ks) channel in human heart; MiRP1 and MiRP2 remove the voltage dependence of KCNQ1 to generate potassium "leak" currents in gastrointestinal epithelia. Other Kv alph...

متن کامل

Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1.

The pore-forming K+-channel alpha-subunit KCNQ1 is expressed in a wide variety of tissues including heart, skeletal muscle, liver, and epithelia. Most recent evidence revealed an association of the KCNQ1 gene with the susceptibility to type 2 diabetes. KCNQ1 participates in the regulation of cell volume, which is, in turn, critically important for the regulation of metabolism by insulin. The pr...

متن کامل

Xe991 reveals differences in K(+) channels regulating chloride secretion in murine airway and colonic epithelium.

The cognitive enhancer XE991 interacts with K(+) channels consisting of KCNQ2 and KCNQ3 heteromultimers to block the M-current. XE991 can also block KCNQ1 K(+) channels expressed in oocytes, but sensitivity is reduced when the channels are coexpressed with minK (KCNE1). The purpose of the study was to examine the interaction of XE991 with other types of K(+) channel, especially those in the bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 49  شماره 

صفحات  -

تاریخ انتشار 2005